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Abstract. It IS  shown that for any system of non-relativistic electrons and nuclei the large- 
wavevector limit of the probability of finding an electron with momentum hl, is proportional 
to l , k s ,  and the electronic structure factor is proportional to 1 'L4. Furthermore. the 
coefficient of the I l k 4  term in the structure factor is proportional to the zero separation 
electron-electron correlation. The coefficient of the I i k 8  term in the momentum distribution 
is proportional to the sum of zero-range electron-electron and electron-nuclear corre- 
lations. 

1. Introduction 

Two important properties of many-electron systems are the structure factor, S(q), and 
the distribution of the electrons' momenta. The momentum distribution is given in 
terms of n(k), the probability of finding an electron with momentum hk, and S(q) is the 
Fourier transform of the two-electron correlation function. 

In principle, both n(k) and S(q) are physically observable. The Born approximation 
to the elastic plus inelastic cross section for scattering with wavevector q from these 
electrons is proportional to S(q) (Nozieres 1964, Inokuti 1971). Information on the 
momentum distribution of the electrons can be obtained from positron annihilation 
data (Stewart and Roellig 1967) and from Compton scattering experiments when the 
impulse approximation is valid (Eisenberger et a1 1972). Theoretically, n(k) and S(q)  
can only be approximated even for idealized systems like the uniform density electron 
gas. An exact knowledge of these important quantities would, for example, enable one 
to calculate the kinetic and mutual interaction energies of the electrons. 

The purpose of this paper is to point out that the large-wavevector limits of n(k) 
and S(q) can be expressed in terms of the zero-range electron-electron and electron- 
nuclear correlations. In principle, then, measurements like scattering cross sections which 
yield information of S(q)  and n(k) also provide a measure of the interparticle correlations. 
These relations are general, and they apply to any system (atoms, molecules, or condensed 
matter) of N non-relativistic electrons interacting only through Coulomb forces with 
each other and N nuclei. For simplicity the nuclei will be assumed static since nuclear 
motion would not significantly alter the results. The basic idea of the calculation is 
simple ; when any two particles are sufficiently close together, their interaction dominates 
the problem and the basic physics can be obtained from a two-particle Schrodinger 
equation. This approach has been applied previously (Kimball 1973) in an investigation 
of S(q) and the dielectric response of the electron gas. Here the method is extended to 
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real systems and the momentum distribution is also calculated. Mathematically stated, 
n(k) and S(q) are obtained as Fourier transforms of functions bilinear in the many-electron 
wavefunction. This wavefunction is continuous, and its derivative is continuous except 
at points in phase space which correspond to zero interparticle separation. The large- 
wavevector dependences of n(k) and S(q) are completely determined by the non-analytic 
points of the wavefunction. 

The Hamiltonian for the electrons is 

where ri and RI are the electronic and nuclear coordinates, Vz means differentiation with 
respect to vi and e Z ,  is the charge of the Ith nucleus. The eigenstates of H are time- 
independent wavefunctions $(rl,  r 2 ,  r g  , . . . rN). This wavefunction is assumed to be 
normalized in a box of volume V with periodic boundary conditions, and spin indices 
have been suppressed. The following quantities can all be expressed in terms of the 
wave function. 

(i) p(r ; r')  is the single electron density matrix : 
N 

p ( r ;  r') = N $*(r,  r 2 , .  . . rN)$(r', r 2 , .  . . r N )  n dri I i = 2  

The real-space particle density is 

n(r) = p ( r ;  U). 

(ii) n(k) is the probability of finding an electron with wavevector k : 

where k must take on values consistent with the periodic boundary conditions. 
(iii) g(r,, r2)  is the probability of finding a pair of electrons at points r1 and r2 

The pair correlation function g(r) is the probability of finding particles separated by 
a distance r : 

g(r) = J g(r1 + r ,  rl)  dr1 

and the structure factor is the Fourier transform of g(r) 

S(q) = e-iq.'g(r) dr. i 
For condensed matter systems which occupy all of the volume, V, the structure factor 
will be proportional to V 2  when q = 0. If the system is periodic, S(q) will also diverge 
as V 2  when q is a reciprocal lattice vector. In this case, we are concerned with values 
of q not equal to a reciprocal lattice vector so that S(q) is only proportional to the 
volume. 
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2. The structure factor 

The large-q behaviour of S(q) is determined by the small-r dependence of g(r). As r 
approaches zero the dynamics of the two adjacent particles is dominated by their 
Coulomb repulsion. Writing +(rl, r , ,  r 3 ,  . . . r N )  as $(r) where r = ( r ,  -r ,) ,  R = ( r ,  + r , ) /2  
and the coordinates { R ,  r 3 , .  . . rN} have been dropped, the Schrodinger equation becomes 

- -v; + - $(r) = ( E  - H')$(r) ( :: ;I 
where p is the reduced mass of the two-electron pair ( p  = iw) ,  E is the energy, and H' 
contains the remaining terms in the Hamiltonian. Because ( E - H ' )  is non-singular as 
r approaches zero, it is unimportant for small r. Significant contributions to the short- 
range correlations occur only when the two electrons are in a relative singlet state with 
zero angular momentum. To first order in r, solutions to the Schrodinger equation 
must be of the form 

where a. is the first Bohr radius (h2/me2). The ratio of dg(r)/dlrl to g(r) as r approaches 
zero can be obtained by an integration of I)*+ over the coordinates { R ,  r 3 , .  . . r N } .  The 
result is 

Because the gradient of the two-electron correlation function is discontinuous at the 
origin, its Fourier transform, S(q), must approach 8ll(ag(r)/alrI)(,,,/q4 for large q. This 
can easily be shown by writing 

where g(r) has a continuous derivative at r = 0. The asymptotic form of the Fourier 
transform ofthe first term gives 8n(8g(r)/dlrl)lr+o times l/q4 independent of y ,  and because 
g(r) is smooth, its Fourier transform vanishes more rapidly than l/q4 as q -+ 00. Hence, 

This direct two-electron correlation is the only effect which leads to terms in S(q) as 
large as l/q4 for large q. The electrons tend to pile up near nuclear positions, and there 
is a peak in g(r ,  , r,)  at points wherer, andr, approach the nuclear coordinates. However, 
the integration over the centre of mass coordinate necessary to obtain g(r) from g(ul, r,)  
smooths out this peak so that there are no other points where the gradient of g(r) is 
discontinuous. 

3. The momentum distribution 

The large-momentum limit of n(k) reflects discontinuous derivatives of the many- 
electron wavefunction rather than the correlation function. Kinks in the wavefunction 
occur whenever two electrons approach each other and whenever an electron approaches 
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a nucleus. These two contributions to  n(k) for large k are additive. The term arising from 
small electron-nuclear separation will be considered first. 

By picking a coordinate system centred on the Ith nucleus, and suppressing indices 
so that $(U, ,  r z ,  . . . r,,,) becomes $(r) (the coordinate r l  is changed to r), the Schrodinger 
equation can be written as 

The terms in the Hamiltonian which are non-singular as r approaches zero are contained 
in H’. As before. to first order in r, $(r) must be of the form 

Since n(k)  is obtained from a double Fourier transform of $*(r)$(r’), the dominant 
nuclear contribution to n(k) ( = n(k)nucl) occurs when both r and r’ are near a nucleus. 
If r is near RI and r‘ is near Rm, then 

Taking the Fourier transform yields the asymptotic form of r ~ ( k ) , , , , ~ ~  

This separates into diagonal ( I  = m)  and non-diagonal terms. The non-diagonal terms 
oscillate and average to zero for large k .  The important diagonal contribution to 
n(k)nucl means that 

where the bar indicates an average over a range of k values large compared with the 
inverse of the nearest-neighbour nuclear distance. 

The electronic contribution to n(k) (= n(k),,) for large k is produced by the kink in 
the wavefunction at zero interelectronic separation. The integrand of 

\ 

~ ( k )  = - exp[ik . (r - r’)[$*(r, r2 ,  . . . r,\)$(r’, r z ,  . . . r,$) dr  dr’ n dr, 
r = 2  “I V 

will have kinks whenever r or r’ equals any of the coordinates {rz ,  r 3 , .  . . rNj .  However, 
if  both r and r‘ are not near the same electronic coordinate (say r2) the integration over 
llr= dri introduces additional factors of l /k2. The asymptotic term is thus determined 
by 

N 

exp[ik . (r -r’)]$*(r, r 2 , .  . . r,.,)$(r’, r2 ,  . . . rN) dr  dr‘ n dr, 
1 = 2  

ii(k) -+ 

where 
coordinate (r2) was chosen. Integration over r and r’ yields 

means r and r’ are near r2 and the factor ( N  - 1) occurs because only one 
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or 

Summing the electronic and nuclear contributions to n(k)  for large k ,  and averaging over 
a range of k vectors greater than the inverse nuclear separation gives the final result 

4. Discussion 

For atoms g(0) is of order Z(Z - l ) /u  (where ti is the 'volume' of the atom) times a number 
that is probably considerably less than 1. But, n(R) is of order Z/r  times a number 
somewhat greater than 1. This means that the electronic correlation correction to n(k) 
for large k is small compared to the nuclear term. I t  might be a few per cent for helium 
and should decrease as Z increases. On the other hand, the large-q dependence of the 
structure factor is completely determined by the electron-electron correlations, and its 
measurement could be used as a check of many-electron wavefunctions. Qualitatively 
similar conclusions about the relative importance of nuclear and electronic contributions 
to n(k)  for large k apply as well to molecules and condensed matter. In principle it would 
be possible to observe changes in interelectron correlations in going from individual 
molecules to condensed matter by observing the large-q limit of S(q), but in practice the 
change would probably be small. 

From a theoretical point of view, the uniform density electron gas is often studied 
as a model of a metal. For this model, there is no contribution to n(k) from nuclear 
terms and 

Others have observed that n(k) should go as I lk8  for large k ,  but have not noted that the 
coefficient is proportional to the zero-range correlation (Eisenberger er a /  1972. Daniel 
and Vosko 1960). Our results can be compared with those of Daniel and Vosko if i t  is 
noted that the n(k) used here is the sum of the spin-up and spin-down probabilities. 
Then using the units of Daniel and Vosko ( h  = V I  = 1 and k expressed in units of kF), 
we find that the results agree only if the zero-range correlation function. g(0). has the 
Hartree-Fock value of 1/2(N/V)2. Higher-order terms in a Gell-Mann-Brueckner-type 
expansion of n(k)  must yield additional terms proportional to l i k 8  which reflect 
variations of g(0) from its Hartree-Fock value. 
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